MA2104
Multivariable Calculus

|Basic Vectors|

e Thm 1: ||cu|| = |¢|||u]]
e Thm 2: (unit vector in direction of a) = ﬁ

¢ Thm 3 [Dot product properties|:
a-b=b-a (da)-b=d(a-b)
a-(b+c)=a-b+a-c 0-a=0
(a+b)-c=a-c+b-c a-a=|al’

=a- (db)

e Thm 4 [Dot product & angle]: a-b = ||a|| ||b|| cos 8

e Thm 5 [Orthogonality]: a L b < a-b=0

e Component (signed scalar): comp, b = ||b|| cos = |—b
e Projection (vector): proj, b = comp, b x Tal = aba
i j k
e Cross product: (aj,as,as) x (b1,ba,b3) == |a; az a3z| =
b1 b2 b3

(agbs — asbe, azby — a1bs, arby — aszby)
e Thm 6: (axb) Laand (axb)Lb
e Thm 7 [Cross prod. & angle]: ||a x b|| = ||a]| ||b]| siné
e Thm 8 [Cross product properties]:
axb=—(bxa) (a+b)xc=axc+bxc
x(b+c)=axb+axc |da)xb=d(axb)=ax(db)

e Scalar triple product (= signed vol. of parallelepiped):

a; az ag
a-(bxc)=|bp by bg|=
Ci C2 C3

a1 (bacg — bsca) ,az (bser — bics) , as (bica — bacy)

e Thm 10 & 11 [Plane]:
n-r=n-rg < ar+by+cz=axrg+byo+czg=d

e Thm 13 [Derivative properties for vectors]:
F @M +s)=r'(t)+s (1)
r(t)) =cr' (1)

dt

d

@ (¢

G (fOr@)=rf@r@E)+ft)r )

G () s@)=r(t) s(t)+r(t) st

4(r(t)xs(t) =1'(t) xs(t)+r(t) xs(t)
e Thm 14 [Arc length]: (length from a to b) f I/ (t)| dt
e Vector rotation: 90° anticlockwise: (x,y) — (—y,x)

90° clockwise: (z,y) = (y,—x)

Surfaces

¢ Level curve of f(z,y) = horizontal trace (for functions in
two vars) = 2-D graph of f(x,y) = k for some constant k
Contour plot = numerous level curves on the same graph

e Level surface of f(z,y,z) = 3-D graph of f(z,y,2) =k
for some constant k.

Quadric surfaces

e Cylinder = infinite prism

¢ Elliptic paraboloid: % z—j =2z

e Hyperbolic paraboloid: % %j =

e Ellipsoid: % +

N
>

e Elliptic cone: % + %

Hyperboloid | ;2 | 42
of one sheet ~ ¢

Hyperboloid . ;2 |, 42
of two sheets

Limits
e Limit: lim f(z,y)=1L
(@,y)—(a,b)
iff for any € > 0 there exists § > 0 such that

|f(z,y) — L| < ¢ whenever 0 < \/(x—a)2+(y—b)2 <0

e Thm 15: To show limit does not exist, take the limit via
two different paths that have different limits

e Thm 16 & 17 [Limit theorems]|: Limits may be taken
into addition, subtraction, multiplication, division

e Thm 18 [Squeeze theorem]:

If | f(z,y) — L| < g(z,y) Y(z,y) close to (a,b)
and lim z,y) =0

(%y)—’(lhb)g( v)
then  lim z,y) =1L

(,y)—(a,b) fle.)

e Continuity: f is continuous at (a, b)

= lm f(@y) = flad)

i.e. the limit exists and the f is valid at (a,b)

e Thm 20 & 21 [Continuity theorems]:
If two functions are continuous (at
difference, product, quotient, and composition are
continuous too (quotient requires denominator # 0)

e All polynomials, trigonometric, exponential, and rational
functions are continuous

(a,b)), then their sum,

| Partial Derivatives|

e Thm 2 [Clairaut’s theorem]: If f;, and f,, are both
continuous on disk containing (a,b) then f,,(a,b)= fyz(a,b)

e Thm 3 [Tangent plane eqn]:
Given surface z = f(z,y) with point (a, b):
- normal vector: (fz(a,b), fy(a,b),—1)

- tangent plane: z = f(a,b) + fz(a,b)(z—a)+ fy(a,b)(y—0b)

e Multivariable differentiability:
z = f(x,y) is differentiable at (a,b) if
Nz = fo(a,b) Az + fy(a,b) Ay + e1dx + e2 Ay
(with vanishing €; and €9) i.e. zooming in to (a,b) will
make surface approximate tangent plane

fz & f, are continuous at (a,b) = f is diff.able at (a,b)
f is differentiable at (a,b) = f is continuous at (a,b)

Differentiation Techniques

e Chain rule: For z = f(z,y) and z = z(t), y = y(t):

dz 8f dx af dy
dt — Ox dt 8y dt
For z = f(x,y) and = = x(s,t), y = y(s, t):
0z _Of 0z  Of 0y
ds Oz ds Oy os

e Thm 11 [Implicit differentiation]: Given F(z,y,z) =0
that defines z implicitly as a function of x and y, then:

0z F(z Y, 2)

or  F.(v,y,2)
% _ y(Jj Y 2)
dy F.(z,y,2)
provided F,(z,y,z) # 0
R A /(@)h(z) — gl (z)
g(x , g (x)h(x) — g(z)h (z
f(l’) = m = f (33) = [h(x)]2

e F(z,y,z) =0 = normal vector = (Fy, F}, F)

|Gradient Vectors|

e Thm 13 [Dir. derivatives]: Dy f(z,y) = Vf(z,y)-u
where Vf(x,y) == (fz, fy) = gradient vector at (z,y)
and u := direction (as unit vector)

e Direction of V f(x,y) = steepest upward direction
|V f(x,y)|| = steepest upward gradient

e Thm 1 [Level curve L Vf]: 0+# Vf(xo,y0) is normal to
the level curve f(z,y) = k that contains (xg,yo)

Y V£(xo, ¥o)
P(x,, Yo) \

b4

level curve

fle,y)=k

e Thm 2 [Level surface L VF]: 0 # VF(x0, Y0, 20) 18
normal to the level surface F(x,y, z) = k that contains

(xOv Yo, ZO)

Critical Points, Minimum, Maximum

given f(z,y): D - R

e Local maximum: (a,b) is a local maximum if
f(z,y) < f(a,d) for all points (x,y) near (a,b)

e Local minimum: (a,b) is a local minimum if
f(z,y) > f(a,b) for all points (x,y) near (a,b)

e Saddle point: (a,b) is a saddle point if
fz(a,b) = fy(a,b) = 0 and every neighbourhood at (a, b)
contains points (z,y) € D for which f(z,y) < f(a,b) and
points (z,y) € D for which f(z,y) > f(a,b)

e Critical point: (a,b) is a critical point if

fx(a’v b) = fy(aab) =0
(If point P is a local mazimum/minimum then:
f=(P) and fy(P) both exist => P is a critical point)

e Local mazimum/minimum and critical points cannot be
boundary points

e Absolute maximum: f has an absolute max. at (a,b) if
V(z,y) € D, f(z,y) < f(a,b)

e Absolute minimum: f has an absolute min. at (a,b) if
V(z,y) € D, f(2,y) > f(a,b)

e Boundary point of R: point (a,b) such that every disk
with center (a,b) both contains points in R and not in R

e Closed set: Set that contains all its boundary points
e Bounded set: Set that is contained in some (finite) disk

e Thm 14 [Extreme Value Theorem]:
If f(x,y) is continuous on a closed & bounded set D, then
the absolute maximum & minimum must exist

e To find absolute maximum/minimum of f with domain D:
1) Find the values of f at all critical points in D
2) Find the extreme values of f on the boundary of D
3) Take largest/smallest of the values of Steps 1 & 2

Lagrange Multipliers

e Suppose f(z,y) and g(z,y) are differentiable functions such
that Vg(z,y) # 0 on the constraint curve g(x,y) = k.

If (zo, o) is a (local) maximum/minimum of f(z,y)
constrained by g(z,y) = k, then V f(xo,y0) = AVg(z0, yo)
for some constant A (the Lagrange multiplier).

T

xy)=11

y)=10
xy)=9
xy)=38
Xy =7

e To find the maximum/minimum points of f(z,y)
constrained by g(z,y) = k, we solve

{ V f(z0,y0) = AVg(z0,Y0)
9(x0,%0) = k

for zg, yo, A.



Integration Techniques

e Integration by parts:

dv du
/u%dx—uv—/£vdx

Area & Volume Integrals

e Thm 4 [Fubini’s theorem]:
If f is continuous on rectangle R =

[a, b] x

[c, d] then:

/Rf(w)dA—/ab/jf(w)dydx—Ldlbf(x7y>dxdy

Region types (double integration):

Typel: D={(z,y):a<z<b, gi(z) <y<ga(z)}
Type I D ={(z,y) : c <y < d, hi(y) <z < ha(y)}

e Polar coords. <— rectangular coords.:

T =rcosf r=a?+y?
y =rsind 0 = atan2(y,

Integrating over a polar rectangle:
HFR={(r6):0<a<r<b a<<pg} then:

//Rf(:v,y)dA:/j/abf(rcos&rsin&rdrdg

Region types (polar):

z)

Typel: D={(r,0):0<a<r<b, g1(r) <0 < ga(r)}
Type ILD = {(r,0) : a <0 <3, hi(0) <r < hy(f)}

¢ Region types (triple integration):

Type I: E={(z,y,2): (z,y) € D, wi(z,y) <2 <
Type II: E={(z,y,2):(y,2) €D, ua(y,z) < <
Type III: E = {(z,y,2) : (x,2) € D, uy(x,2) <y <

Spherical coords. «+— rectangular coords.:
= T = psin ¢ cosf

0 y = psin¢sinf
zZ = pcos ¢

P(x,y,z)

Plp. 8. ¢)

P'(x,7,0)

¢ Integrating over a spherical wedge:

IfE={(p,0,¢):0<a<p<ba<f<pB,c<p<d} then:

Jf s

/ / / f(psingcosf, psin¢sind, pcos¢)p sin ¢ dp df do

e Jacobian (2D) of transformation (u,v) — (z,y):
o) |G ) _0r0y _0c0n
A(u, OZ Oudv v du

O(x,y)

) ‘3(u v)

//fa:ydA //f w(u,v)

du

dv

e Jacobian (3D) of transformation (u,v,w) — (z,y, 2):
Oz Oz  Ox
Awyz) |\ By %y
A(u, v, w) o 9 8
ow
/// flz,y,2)dV =
///f (u, v, w), y(u,v,w), z(u, v,w)) @y, 2) du dv dw
O(u, v, w)

e Consider choosing transformation to make bounds constants

1
and appropriate f(z,y) may

. Usmg‘ (:m/ = ’8(’“”) -

O(u,v) o(z,y)
avoid needing to express z,y in terms of u, v

Line Integrals

e Line integral for scalar field:
If curve C' is given by r(t) = (z(t), y(t), 2(t)), a <t < b then:

b
/ F(,y,z)ds = / S (), y(t), 2(0)) ¥ ()] de
C a

Answer is indep. of orientation and parameterization of r(t)

e Line integral for vector field:
If curve C'is given by r(t) = (z(t),y(t), 2(t)), a < ¢ < b then:

b
/F(x,y,Z)'dPZ/ F(x(t), y(t), 2(t)) - x'(t) dt =
C

a

b b b
/(P dz +Qdy+ Rdz) = /Px’(t)dt +/Qy’(t)dt + [ RZ'(t)dt
C a a a

Answer is its negation when r(t) has opposite orientation

Conservative vector fields

e A vector field F is conservative on D iff F = v f
for some scalar function f on D
f is called the potential function of F

e To recover f from F = (f;, f,), do partial integration of f,
to get g(x,y) + h(y) [= f(z,y)] (where h(y) is the unknown
integration constant), then differentiate g(z,y) + h(y) w.r.t.
y and compare with f, to determine h(y)

e Test for conservative field (2D):
If F = (P, Q) is a vector field in an open (ezcludes all
boundary points) and simply-connected (has no “holes”)
region D and both P and @ have continuous first-order
partial derivatives on D then:
0Q _OP

— = — <= F is conservative on D
or Oy

e Test for conservative field (3D):
F = (P,Q, R) (similar requirements as 2D case):

0Q 9P OR _0Q 0P OR

Ox Oy Oy 90z 0z Ox

F is conservative
on D

¢ Fundamental theorem for line integrals:
If F is conservative with potential function f, and C'is a
smooth curve from point A to point B, then:

/F~dr:/ vf-dr=f(B)— f(A)
c c
— line integral for conservative field is path-independent

e Two paths with different line integrals but same initial and
terminal points = vector field is not conservative

|Green’s Theorem |

e If C is a positively oriented (anticlockwise), piecewise
smooth, simple closed curve in the plane, and D is the
region bounded by C, and F = (P, Q) then:

/CF'dr:/Cde+Qdy://D (gﬁg)dA

(useful when % - %—1; is simpler than P and Q)
o ! Look out for holes (+0) — use extended Green’s theorem
o ! When borrowing other question result, check orientation

¢ Reverse application of Green’s theorem:
If A is the area of D, then (choose whichever is convenient):

1
A:/xdy:—/ydx:f/(xdy—ydm)
c c 2 Je

Parameterize the boundary curve in terms of ¢ (a <t < b)

g ;/ (mﬁj“t’—y( )dx)dw

Surface Integrals

e Parametric form of a surface in R3:
r(u,v) = (z(u,v),y(u,v), z(u,v)), (u,v) €D

e Smooth surface: A surface that is parameterized by
r(u,v) where (u,v) € D, such that r, and r, are continuous
and ry, X1, #0V (u,v) € D

e Thm 6 [Normal vector of parametric surface]:
If a smooth surface S has parameterization
r(u,v) = (x(u,v),y(u, v), z(u,v)), (u,v) € D then:
ry(a,b) X ry(a,b) is normal to S at (z(a,b),y(a,b),

z(a,b))

e Thm 7 [Surface integral for scalar field]:
If a smooth surface S has parameterization
r(u,v) = (z(u,v),y(u,v), 2(u,v)), (u,v) € D then:

//Sf(x,y,z) ds = //Df(sc(u, ), y(u,v), 2(u, v) |re X1, || dA

e Thm 7a [Surface integral special case z = g(z,y)]:
If S is the surface z = g(x,y) where (z,y) € D then:

w2 G )

¢ Orientable surface: two-sided surface
Positive orientation: outward from enclosed region

¢ Thm 6 [Surface integral for vector field]:
If a smooth surface S has parameterization
r(u,v) = (x(u,v),y(u,v), z(u,v)), (u,v) € D then:

[ = [ rsis- [ v

¢ Thm 6a [Surface integral special case z = g(z,y)]:
IfF=(PQ,R), and S is the surface z = g(z,y) where
(x,y) € D, then the flux in the upward orientation:

flr e (-t

) dA

(ry X 1y)

Vector Differential Operator

_[9 9 9
- \0x’ 0y’ 0z

Divergence
If F = (P,Q, R) then:
oP 0Q OR
divF =v-F=Z-+ 50+ 5

Gauss’ theorem

If ' is a solid region with piecewise smooth boundary surface
S with positive (outward) orientation then:

[l o ff e

Curl
If F=(P,Q,R) then:

_ _[OR _0Q 0P OR 9Q 9P
curlF—VxF—< 0z 0z 0z’ Oz >

Stokes’ theorem

If S is a surface with a boundary curve C' (positively oriented

w.r.t. S) then:
/ F-dr://curlF-dS
C S

Positive orientation of boundary curve:
If surface S has unit normals pointing towards you, then the
positive orientation of boundary curve C' goes anti-clockwise

Trigonometric Formulae

Double angle Integrals

— )
S22 = 25T cos @ / sin 2 dx = - (22 — sin 2z)

cos 2z = cos? z — sin’ x h
=2cos’x — 1 /coszxdx:f(2x+sin2x)
. 9 4
=1-2sin“z
2tanx /taandmztanx—x
tan 2z = ———5—
1 —tan®x

. 1
Triple angle /sin3 rdr = — (cos3z — 9cosx)
T o o .3 12

sin3z = 3sinz —4sin” x

1
cos 3z =4cos®z — 3cosx /Cosgxdzzﬁ(sin3x+9sinx)

Pythagorean 1
sinx + cos?z =1 /Sinxcosxdx:—§cos2x
tan®z + 1 = sec’ x 1.,
cot’z+1=cs?z —§s1n *

Sum of angles
sin(a + ) = sinacos f + cos asin 3
cos(a £ ) = cosacos B Fsinasin
t +t
tan(o 4 @) — o dtanf
1 Ftanatan
cotacot fF 1

t(a £ ) =
cot(a+ f) cot 8 + cot a



