
CS2106 Introduction to
Operating Systems

Basics

� Operating Systems ...
- Manages resources and coordination (process
synchronization, resource sharing)
- Simplify programming (abstraction of hardware,
convenient services)
- Enforce usage policies
- Security of protection
- User program portability (across different hardware)
- Efficiency (optimized for particular usage and hardware)

� Kernel mode: complete access to all hardware resources
User mode: limited access to hardware resources

� Monolithic OS: Kernel is one big special program
Microkernel OS: Kernel is very small and clean, and only
provide basic and essential facilities (e.g. IPC, address space
management, thread management); higher-level services
(device driver, process management, memory management,
file system) built on top of basic facilities and runs outside
the OS (using IPC to communicate). Kernel is more robust,
and there is more isolation and protection between kernel
and higher-level services, but at lower performance.

� Type 1 Hypervisor: Runs directly on hardware
Type 2 Hypervisor: Runs on a host operating system

Process Abstraction

� Generic 5-State Process Model:

RunningReady

Generic 5-State Process Model

48
[CS2106 L2 - AY1819S1]

admit

switch: scheduled exit

event waitevent occurs

create

switch:

release CPU

Notes: generic process states, details vary in actual OS

New

Blocked

Terminated

� Process Control Block (PCB): information about a
process: registers, memory region info, PID, process state

� Syscall mechanism:
1. User program invokes library call
2. Library call places the syscall number of designated
location (e.g. register)
3. Library call executes TRAP instruction to switch to
kernel mode
4. Appropriate system call handler is determined using the
syscall number as index (usually handled by a dispatcher)
5. Syscall handler is executed (this carries out the actual
request)
6. Control returned to library call, switched back to user
mode
7. Library call returns to user program

� Exception: Synchronous (occurs due to program
execution, e.g. arithmetic errors, memory access errors).
Executes an exception handler, like a forced syscall.

� Interrupt: Asynchronous (occurs independent of program
execution, e.g. timer, mouse movement, keypress). Executes
an interrupt handler, program execution is suspended.

Process Abstraction in Unix

� pid t fork(void):
Parent returns PID of child, child returns zero

� int execl(const char *path, const char *arg, ...)

int execv(const char *path, char *const argv[])

e.g. execl("/bin/ls", "ls", "-la", NULL)

� init process is the root process (traditionally PID=1)

� int wait(int *status)

Set status to NULL to ignore status
Least significant 8 bits is the value passed to exit(int)

Process Scheduling

� Non-preemptive (Cooperative): Process stays
scheduled until it blocks or yields
Preemptive: At the end of time quota, the process is
suspended (it is still possible to block or yield early)

Batch Processing

No user interaction, non-preemptive scheduling is predominant

� Turnaround time: Total time taken from arrival to finish
(including waiting time)
Throughput: Number of tasks finished per unit time
CPU utilization: Percentage of time CPU is doing work

� First-come first-served: Use FIFO queue based on
arrival time (when tasked is blocked it is removed; it is
placed at the back of queue when it is ready again).
Guaranteed to have no starvation
Shortest Job First: Select task with smallest CPU time
(until next I/O). Starvation is possible because long job
may never get a chance (when short jobs keep arriving).
Prediction of CPU time usually uses exponential average of
history

Shortest Remaining Time: Preemptive version of SJF

� Convoy effect: Many tasks contend for CPU (while I/O is
idle), and then contend for I/O (while CPU is idle)

Interactive Environment

Preemptive scheduling algorithms are used to ensure good
response time

� Response time: Time between request and response by
system
Predictability: Less variation in response time Time
quantum: Execution duration given to a process, must be
a multiple of timer interrupt

� Round robin: Like First-come first-served, but will be
interrupted when time quantum elapses
Priority scheduling: Each task gets a priority, highest
priority gets scheduled first.
Preemptive variant: new higher priority process preempts
currently running lower priority process

Non-preemptive variant: new higher priority process has to
wait for next round of scheduling
Low priority process can starve
Priority inversion: higher priority task forced to block while
lower priority task gets to run
Multi-level feedback queue:
If Priority(A) > Priority(B) then A runs
If Priority(A) == Priority(B) then round-robin
New job gets highest priority
If a job fully utilized its time slice then priority reduced
If a job yields/blocks then priority retained
Lottery scheduling: Lottery tickets assigned to processes
(possibly unevenly depending on priority), and randomly
chosen winner is allowed to run (preemptive)
Parent can distribute tickets to its child processes, and each
shared resource (CPU, I/O) can have its own set of tickets

Threads

“Lightweight process”

� Benefits:
Much less additional resources needed as compared to
processes
No need for additional mechanism to pass information
between threads
Multithreaded programs can appear much more responsive
Multithread programs can take advantage of multiple CPUs

� Problems:
Parallel syscall possible - have to guarantee correctness
Process behaviour - fork()/exec()/exit() when there are
multiple threads

� User thread: Thread is implemented as a user library
(just library calls); kernel is not aware of the threads
- Implemented by library: more flexible, e.g. customized
thread scheduling policy - One thread blocked -¿ all threads
blocked - Cannot exploit multiple CPUs

� Kernel thread: Thread is implemented in the OS (using
syscalls); thread-level scheduling is possible - Multiple
threads from same process can run simultaneously - Thread
operations are syscalls: more resource-intensive and slower -
Less flexible, so it can be generic enough for all
multithreaded programs

� Hybrid thread model: User thread can bind to a kernel
thread

Hybrid Thread Model
 Have both Kernel and User threads
 OS schedule on kernel threads only
 User thread can binds to a kernel thread

 Offer great flexibility
 Can limit the

concurrency
of any process / user

20[CS2106 L4 - AY1819S1]

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr /*NULL*/,

void *(*start_routine) (void *) /*function ptr*/,

void *arg /*argument for start_routine*/);

int pthread_exit(void *retval);

int pthread_join(pthread_t thread, void **retval);

Inter-Process Communication

Shared memory

� Advantages:
Efficient (only the initial steps involves OS)
Easy to use (shared mem region behaves like normal mem)

� Disadvantages:
Synchronization (of access)
Implementation is usually harder

int shmget(key_t key /*can be IPC_PRIVATE*/,

size_t size, int shmflg /* IPC_CREAT | 600*/);

//IPC_CREAT means memory will be created if nonexistent

void *shmat(int shmid, const void *shmaddr /*NULL*/,

int shmflg /*0*/);

int shmdt(const void *shmaddr);

int shmctl(int shmid, int cmd /*IPC_RMID*/,

struct shmid_ds *buf /*unused for IPC_RMID*/);

Message passing

Messages stored in kernel memory space

� Direct communication:
Sender/receiver explicitly names the other party
One buffer per pair of (sender, receiver)
Indirect communication:
Sender sends to mailbox/port
Receiver receives from mailbox/port

� Blocking primitives (synchronous):
Send() blocks until message is received
Receive() blocks until message has arrived
Non-blocking primitives (asynchronous):
Send() does not block
Receive() returns some indication if no message is available

� Advantages:
Portable (can implement in distributed system or network)
Easier synchronization (blocking primitives implicitly
synchronize sender/receiver)
Disadvantages:
Inefficient (needs OS intervention)
Harder to use (messages limited in size/format)

Unix Pipes

Pipes function as fixed-size circular byte buffer with implicit
synchronization
- writers wait when buffer is full
- readers wait when buffer is empty

int pipe(int pipefd[2]); // create new pipe

pipefd[0]: file descriptor for reading

pipefd[1]: file descriptor for writing

Unix Signals

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

// returns previous signal handler, or SIG_ERR on error

Synchronization

Critical Sections

� Properties of correct implementation:
Mutual exclusion: If there is a process in CS then all other
process cannot enter CS
Progress: If no process is in CS then one waiting process
should be granted access
Bounded wait: After a process requests to enter the critical
section, there exists an upper bound of number of times
other processes can enter the CS before this process
Independence: Process not in CS should never block other
processes

� Symptoms of incorrect synchronization:
Deadlock: All processes blocked
Livelock: Processes are not blocked, but they keep changing
state to avoid deadlock and make no other progress
Starvation: Some processes are blocked forever

� Test and Set: TestAndSet Reg, Mem

- Atomically load current content at Mem into Reg, and
stores 1 into Mem

� Peterson’s Algorithm:

21

Peterson's Algorithm

 Assumption:

 Writing to Turn is an atomic operation

0Want[0]

Want[0] = 1;

Turn = 1;

while (Want[1] &&

Turn == 1);

Want[0] = 0;

Process P0

0Want[1]

0Turn

Want[1] = 1;

Turn = 0;

while (Want[0] &&

Turn == 0);

Want[1] = 0;

Process P1

[CS2106 L6 - AY1819S1]

Critical Section Critical Section

Disadvantages: busy waiting, low level, not general

Semaphores

� Properties of correct implementation:
Mutual exclusion: If there is a process in CS then all other
process cannot enter CS

� Wait()/P()/Down() and Signal()/V()/Up()

� Threads queue up on a semaphore (fair scheduling)

� General semaphore: value can be any non-negative
integer

� Binary semaphore: value can be only 0 or 1 (undefined
behaviour to Signal() on binary semaphore which is
currently 1)

� Producer-Consumer:

38

Producer Consumer: Blocking Version

 Initial Values:
 count = in = out = 0

 mutex = S(1), notFull = S(K), notEmpty = S(0)

while (TRUE) {

Produce Item;

wait(notFull);

wait(mutex);
buffer[in] = item;

in = (in+1) % K;

count++;

signal(mutex);

signal(notEmpty);
}

Producer Process

while (TRUE) {

wait(notEmpty);

wait(mutex);
item = buffer[out];

out = (out+1) % K;

count--;

signal(mutex);

signal(notFull);

Consume Item;

}
Consumer Process

[CS2106 L6 - AY1819S1]

Memory Management

� Memory regions:
Text: for instructions
Data: for global variables
Heap: for dynamic allocations
Stack: for function invocations

� Transient data: variables with automatic storage duration
Persistent data: globals, dynamically allocated memory

� Alternatives for memory abstraction:
Address relocation: translate all addresses at load time
Base + Limit registers: generate instruction to add Base to
all memory references at compile time, and check against
Limit for validity

� Memory partitioning: every process gets a contiguous
memory region
Fixed partitioning: physical memory is split into fixed
number of partitions, each process occupies exactly one
partition
- Internal fragmentation when process does not need whole
partition
Dynamic partitioning: partition is created based on actual
size of process, OS keeps track of memory regions, and
split/merge free regions when necessary
- External fragmentation unused “holes” in physical
memory due to process creation/termination

Dynamic Allocation Algorithms

� Linear search based:
First-Fit: take the first hole that is large enough
Best-Fit: take the smallest hole that is large enough
Worst-Fit: take the largest hole
Merging & Compaction:

When partition is freed, try merging with adjacent holes
Can move occupied partitions around to consolidate holes

� Buddy system:

38[CS2106 L7 - AY1819S1]

Buddy System: Example
 Assume:

 the largest block is 512 (29)
 Only one free block of size 512 initially

…
…
…

A[9]

A[8]

A[1]

A[0]

0

Starting address = 0
Size = 29

NULL pointer to
indicate no free

block of this size

Free Memory = 512
0

T1 Request 100

Block P allocated at 0
size = 128

…
…
…

A[9]

A[8]

A[0]

256

A[7] 128

FreeP Free
0 128 256

- Each element A[J] is a linked list that keeps track of free
blocks of size 2J

- Each free block is indicated just by the starting address
- There might be a smallest allocatable block size, i.e. a
constant K > 0 such that A[J] exists only when J ≥ K
- To allocate size 2S : find smallest free block with
size ≥ 2S , then repeatedly split until there is a block of size
2S , then return that block of size 2S

- To deallocate: if buddy is also free, merge with buddy and
repeat; otherwise add block to the linked list

Paging

� (Physical) frame
(Logical) page
- Frames and pages have the same size
- Logical memory remains contiguous but physical memory
may be disjoint

� Address translation:
- Make frame size (= page size) a power-of-2

Logical Address Translation: Essential Tricks

 Two important design decisions simplifies the

address translation calculation

1. Keep frame size (page size) as a power-of-2

2. Physical frame size == Logical page size

p d

Page Number Offset

n bits(m – n) bits

Translation

mechanism

f d

Frame Number Offset

Logical

Address

Physical

Address

[CS2106 L8 - AY1819S1] 8
� Fragmentation: Paging removes external fragmentation

(all free frames can be used without wastage), but pages
can still have internal fragmentation (logical memory
required may not be a multiple of page size)

� Page table:
Stores physical frame for
each logical page

� Translation look-aside
buffer (TLB):
cache of a few table entries

� Memory access time
with TLB:
= TLBhit + TLBmiss
= 40%× (1ns + 50ns) + 60%× (1ns + 50ns + 50ns)

Translation Look-Aside Buffer: Illustration

14[CS2106 L8 - AY1819S1]

CPU P D

Physical
Memory

F D

Page# Frame #

TLB

Frame #

Page Table

P

� Context switching & TLB: On context switch:
- TLB entries are flushed (so incoming process won’t get
incorrect translation)
- (Optional) Save TLB state to PCB, and restore TLB data
for incoming process (to reduce TLB misses)

� (x86) On a TLB miss, the hardware searches through the
page table (without invoking the OS); OS is informed only
on page fault

� Extensions for protection:
Access-right (RWX) bits: memory access is checked against
access right bits (by hardware)
Valid bit: represent invalid logical addresses, invalid access
will be caught by OS

� Page sharing: Several processes use same physical frame
- e.g. shared libraries, copy-on-write from fork()

Segmentation

- Each region of memory is
placed in a separate segment
so they can grow/shrink freely

- Each memory segment has a
segment id and limit

- Memory references are
specified as:

segment id + offset
- Can cause external fragmentation

0

1

2

3

segment table

LimitBase

Logical Address Translation: Illustration

Physical Memory

Assume:
User Code Segment = 0

Global Data Segment = 1

Heap Segment = 2

Stack Segment = 3

0

1

2

3

3500

6000

2400

0

segment table

2200

1500

1100

1300

LimitBase

Memory Access

< Segment Id, Offset > User

Code

Segment

Stack

Segment

Heap

Segment

Global

Data

Segment

0

1300

2400

3500

5700

6000

7500

2900

[CS2106 L8 - AY1819S1] 28

< 2, 500 >

Segmentation with PagingSegmentation with Paging: Illustration

33[CS2106 L8 - AY1819S1]

CPU S P D

Page
limit

Pg Table
Base

Frame
Number

<

F D

Yes

No

Addressing
Error!

S

P

Physical

Memory

Segment Table

Page
Table

Secondary Storage (With Paging)

� Some pages can be stored on secondary storage, so that a
process can use more logical memory than what is
physically available

� Page table stores memory resident bit:
- memory resident: page in physical memory (RAM)
- non-memory resident: page in secondary storage

� Page fault: When CPU tries to access non-memory
resident page
- OS locates the page in secondary storage and loads it into
physical memory

� Thrashing: Page fault happens too often
- for well-behaved programs it is unlikely to happen due to
temporal and spatial locality

Page Table Structure

� Direct paging: All pages in single table, might occupy
several memory pages

� 2-level paging: Keep a page directory, [[TODO]]

� Inverted page table: Single table for all processes, stores
(pid, logical page) indexed by frame number

Page Replacement Algorithms

� Optimum (OPT): Replace the page that will not be used
again for the longest period of time, not feasible as it needs
future knowledge

� First In First Out (FIFO): Evict the oldest page first
- simple to implement, OS maintains a queue of resident
page numbers
- can be tricked: try 3 / 4 frames with 1 2 3 4 1 2 5 1 2 3 4 5

(Belady’s Anomaly)
- does not exploit temporal locality

� Least Recently Used (LRU): Evict the page that has
not been used for the longest time
- makes use of temporal locality
- does not suffer from Belady’s Anomaly
- difficult to implement, needs hardware support:
(option 1) store “time-of-use” and update it on every access,
need to search through all pages to find earliest time-of-use
(option 2) maintain a “stack”; when page is accessed,
remove from stack (if exists) and push on top of stack

� Second Chance Page Replacement (CLOCK):
Maintain a circular queue of page numbers, and each page
table entry has a “reference bit”Second-Chance Page Replacement (CLOCK)

 General Idea:
 Modified FIFO to give a second chance to pages

that are accessed

 Each PTE now maintains a "reference bit":
 1 = Accessed, 0 = Not accessed

 Algorithm:
1. The oldest FIFO page is selected

2. If reference bit == 0 Page is replaced

3. If reference bit == 1 Page is given a 2nd chance

 Reference bit cleared to 0

 Arrival time reset page taken as newly loaded

 Next FIFO page is selected, go to Step 2

 Degenerate into FIFO algorithm
 When all pages has reference bit == 1

[CS2106 L9 - AY1819S1] 37
Second-Chance: Implementation Details

 Use circular queue
to maintain the
pages:
 With a pointer

pointing to the oldest
page (the victim
page)

 To find a page to be
replaced:
 Advance until a

page with '0'
reference bit

 Clear the reference
bit as pointer passes
through

38[CS2106 L9 - AY1819S1]

Frame Allocation

� Simple Approaches:
Equal allocation: Each process gets same number of frames
Proportional allocation: Each process gets number of
frames proportional to its memory usage

� Local/Global Replacement:
Local replacement: Evicted page selected from same process
- thrashing limited to single process
Global replacement: Evicted page can be from any process
- can cause thrashing in other processes

� Working Set Model:
- Set of pages referenced by a process is relatively constant
in a period of time (“locality”)
- Page fault only when changing to new locality
- Use magic constant 4 = working set window (interval)

Working Set Model: Illustration

 Example memory reference strings

 Assume

 ∆ = an interval of 5 memory references

 W(t1,∆∆∆∆)={1,2,5,6,7} (5 frames needed)

 W(t2,∆∆∆∆)={3,4} (2 frames needed)

 Try using different ∆ values

t1

∆

[CS2106 L9 - AY1819S1] 48

… 2 6 5 7 1 1 2 7 5 6 3 4 4 4 3 5 3 …

t2

∆

File System Management

� Access types: Read, Write, Execute, Append, Delete,
List (retrieve metadata of the file)

� Access control list (ACL): list of user identities and
allowed access types (very customizable but use large space)

� Permission bits: Owner/Group/Universe,
Read/Write/Execute, e.g. rwxr--r--

� In Unix, Minimal ACL = permission bits,
Extended ACL = add named users/groups

� File structure:
Array of bytes (usual)
Arr. of fixed-length records (can jump to any record easily)
Arr. of var.-length records (flexible but hard to find record)

� Access methods:
Sequential access: have to read and rewind on order
Random access: read in any order, exposed via either way:
1. Read(Offset): every read explicitly states position
2. Seek(Offset): special operation to move to new location
Direct access: like random access, but for fixed-length
records (e.g. in database)

� Generic operations on file data: Create, Open, Read,
Write, Reposition/Seek, Truncate

� Info kept for opened file: File pointer (current location
in file), Disk location, Open count (number of processed
that has this file opened)

� Open file table (Unix):
File Operations: Unix Illustration

Proc A PCB

0

1

……

fd

File Descriptor

Table

…

0

…

x

Op.Type: …
File offset: …
"File Data":

Op.Type: Read
File offset: 1234
"File Data":

……

Op.Type: Write
File offset: 5678
"File Data":

y

Open File Table

……

Proc B PCB

File Descriptor

Table

0

1

……

fd

File1.abc

File2.def

"Actual File"

System

Calls

Process make
file system

calls, usually
with file

descriptor fd

[CS2106 L10 - AY1819S1] 28- Two file descriptors (i.e. open file table entries) can point
to same file (e.g. two process open same file, or same
process open file twice)
- Two processes use the same file descriptor (i.e. open file
table entry) (e.g. after fork())

� Links in directory structure):
Hard link (limited to file only): ref counted, creates DAG
Symbolic link (can be file or directory): uses special link
file, can create general graph

File System Implementations

� Generic disk organization:

6

Generic Disk Organization: Illustration

MBR Partition Partition …… Partition

Simple

Boot Code

Partition

Table

OS Boot
Block

Partition
Details

Directory
Structure

Files
Info

File Data

Data for all files

are here
Information for all

files are here

[CS2106 L11 - AY1819S1]

Block Allocation

� Contiguous: allocate consecutive disk blocks to a file
- simple to keep track, fast access (no need to seek)
- has external fragmentation

� Linked list: each disk block stores next block number too
- no external fragmentation
- slow random access to file, part of block is used for pointer

� File allocation table (FAT): next block numbers stored
in single table that is always in memory
- faster random access
- FAT keeps track of all disk blocks (takes up memory
space)

� Indexed allocation: each file has an index block (stores
list of blocks containing the file)
- lesser memory overhead, fast direct access
- limited max file size, index block overhead

� Indexed allocation with linked list: index block
contains a pointer to next index block (of the same file)
- no file size limit

� Multi-level index: like multi-level paging
- very large file size limit
Combination: e.g. Unix I-node

Free Space Management

� Bitmap: Each disk block represented by 1 bit
- e.g. 1=free, 0=occupied

� Linked list: Use an unrolled linked list of disk blocks
- store the free list in free disk blocks

Directory Implementation

� sub-directory is usually stored as file entry with special type
in a directory

� Linear list:
- requires linear search, usually last few searches are cached

� Hash table:
- file name is hashed
- fast lookup, but hash table has limited size and depends
on good hash function

Disk Scheduling
Magnetic Disk in One Glance

37

Sector

Track

Disk

Head

Rotation
(Change Sector)

Seek
(Change Track)

[CS2106 L11 - AY1819S1]

� First-Come-First-Serve (FCFS)

� Shortest Seek First (SSF): closest track first

� SCAN (elevator), C-SCAN (outside to inside only)

� LOOK (real elevator)

File System Case Studies

FAT

� Layout:

Microsoft FAT File System Layout

4
[CS2106 L12 - AY1819S1]

data blocks

partition 1 partition 4partition 3partition 2
M

B

R

FAT FAT
Duplicate

Boot root

directory

optional

� File allocation table contains one of:
- FREE
- <Block number> of next block
- EOF
- BAD

� Directory entry:
- special type of file
- root directory is stored in a special location, other
directories stored in normal data blocks

Directory Entry Illustration

File Name Reserved

File
Extension

Attributes

Creation Date
+ Time

First Disk
Block

File Size in Bytes

38 bytes 1 10 2 2 2 4

[CS2106 L12 - AY1819S1]
8

…

…

…

data block

of a

directory

each

file/subdirectory is

represented as a

directory entry

� File deletion: set first letter of filename to 0xE5

� Free space: must be calculated by going through FAT

� Clusters: (for newer FATs) group of disk blocks as
smallest allocation unit

� Virtual FAT: use multiple dir. entries for long file name

Ext2

� Layout:Ext2 FS: Layout

partition 1 partition 4partition 3partition 2
M

B

R

Block Group 0 Block Group 1 Block Group 2 ...BOOT

Group

Descriptors
Data Blocks

Super-

Block

Block

Bitmap

I-node

Bitmap

I-node

Table

[CS2106 L12 - AY1819S1]
21

� Superblock, group desc. duplicated in each block group

� Block, I-node bitmap 1=occupied, 0=free

� I-Node structure:Ext2: I-Node Structure (128 Bytes)

24
[CS2106 L12 - AY1819S1]

Mode (2)

Owner Info (4)

File Size (4/8)

Timestamps
(3 x 4)

Reference
Count (2)

Data Block
Pointers (15 x 4)

… Other …

… Fields …

File type (regular, directory,

special, etc) + File permission

User Id (2 bytes)

+ Group Id (2 bytes)

File Size in bytes. Larger for

regular file (8 bytes)

Creation, Modification &

Deletion timestamps

Indices of data blocks. 12 x direct, 1 x

indirect, 1 x double indirect, 1 x triple indirect

Number of time this I-Node is

referenced by directory entry

� Directory entry:
- size includes all subfields and possible gap to next entry
- root directory has a fixed I-node number

Directory Entry (Illustration)

91 F 4 Hi.c 39 F 8 lab5.pdf

74 D 3 sub 0

I-Node Number

Entry Size

Entry Type

Name Length

Name
Use a 0 I-Node

number to indicate

unused entry

[CS2106 L12 - AY1819S1]
30

� Deleting a file:
- remove its directory entry from the parent directory by
adjusting previous size to point to next entry
- update I-node bitmap by marking file’s I-node as free
- update block bitmap by marking file’s blocks as free

� Hard link: multiple directory entries point to same I-node

� Sym. link: file (not I-node) content is path of target file
- can become invalid if target is deleted

Journaling

Write information or actual data to separate log file before
performing file operation, so it can recover from system crash

