ngz 1 O Parallel Computing e Condition variable: supports three operations: - MISD: no actual implementation e Parallel programming patterns:
Wait: release monitor lock and blocks - SIMD+MIMD: Stream processor (e.g. NVIDIA GPUs) Fork—Join: explicit fork()/join() to work in parallel

’ Processes ‘ (Condition variables have wait queues too) Parbegin—Parend: specify sequence of statements to be

Sienal I tine thread e Memory organization: tod Tlel ( 0 P for-loop)

. . . . ignal: wake one waiting threa o . executed in parallel (e.g. OpenMP for-loop

Time sl : Sam shared by multipl 2. Distributed-Mem. (Multicomputers) — ) ) ) )

¢ Time slicing: Same core shared by multiple processes Broadcast: wake all waiting threads ( P ) SIMD: same instruction operating on different data

Create _— cannot directly access other mem = )
Pr°°es e Barrier: blocks until specified number of threads arrive Shared-Mem. (Multiprocessors) — SPMD: same program on diff. processors & data (e.g. MPI)
Ready

- Uniform Memory Access (UMA) M%Lsterfslave: master assigns work to slaves
Client—Server: MPMD model where server computes
- memory latency same for every processor
Schedule
Process

VO Done e Starvation: process is prevented from making progress

because some other process has the resources required, e.g.:
- a high priority process always prevents low priority
process from using CPU

- Non-Uniform Memory Access (NUMA) requests from multiple client tasks concurrently (can use
multiple threads for the same request); a task can generate

requests to other tasks (client role) and process requests

Unschedule
Process

- physically dist. mem. mapped to shared addr space
- Cache coherent NUMA (ccNUMA): =5

/0, Page - one thread always beats another to acquire lock cach node has cache memory that from other tasks (server role); used in heterogeneous
Terminated , | ‘ . )
erminate — Fault, etc e Deadlock: amongst a set of processes, every process is keeps a consistent memory image for all processors ‘ systems e.g. cloud & grid Qomputlng ) )
Exit waiting for an event that can be caused only by another _ Cache-only Memory Access (COMA) — Task Pools: num. threads is fixed; during processing of a
process in the set - data migrates dynamically = = task, new tasks can be generated and inserted into task
e fork() — useful when child relies on parent’s data Deadlock can exist iff all four conditions hold: Hybrid (Distributed-shared mem.) pool; useful for non-fixed task size, must synch. pool access
Disadvant . . ¢ . tIv (all dat 1. mutual exclusion (at least one non-shareable resource) . Producer—-Consumer: shared data buffer/queue

* Disadvantages: creation of new process is costly (all data 2. hold and wait (at least one process holding resource but o Advantages/Disadvantages of shared memory: Pipelining: stream parallelism (a form of functional parall.)

structures must be copied), communication costly (goes
through the OS)

- no need to partition code/data, no need to physically

waiting for another resource) ) b
move data among processors — efficient communication)

3. no preemption (CS cannot be aborted externally)

e Data distribution:
Blockwise: for homogeneous load over data structure

: . . : - but special synchronization constructs are required, and 2R WE
Throads 4{1.Pc1rculzj; v}valt (ﬁl;e}lretrgl}b; e>.<15t a ts.et off pr]c;cesses lack of scalability due to contention Cyclic: for inhomogeneous load, to improve load balancing
1y« fpy SUCH Bhat Vi, 15 1S walting 10T (i +1)%n ; Block-cyclic: reduce overhead for cyclic but keep its benefits
e User-level: OS is unaware — fast context switching, but Dealing with deadlock: e Multicore architecture: Wmmm. s 2D arrays: either group row-wise/column-wise or apply
cannot map to different execution resources (no - Ignore . . Hierarchical design: multiple caches, B = (D data distribution on both dimensions (checkerboard)
parallelism), blocking I/O will block all threads - Prevent (make it impossible for deadlock to happen) slower cache shared by more cores | [ L1, i .
o K I OS i - Avoid (control resource allocation) Pipelined design: same computation o o Informatlf)n exchange:
ernet: 15 aware - Detect & Recover (look for a cycle in dependencies) steps to be applied on sequence of data Shared variables: used for shared address space
e Mapping: e Producer-consumer with finite buffer: Network-based design: cores and their local caches and - need to S}’nChronlze (e.g. mutex) to aYOId race condition
Many-to-one: All user-level threads mapped to one process, Producer Consumer memories are connected via an interconnection| Sequential (computation re.sult depends on execution order of threads)
thread library is responsible for scheduling event = waitForEvent () items.wait () Algorithm - each tthead. might alsF) have private \{arlz-xbles
One-to-one: Each user-level thread is mapped to exactly spaces.wait () mutex.wait ( Parallel Pro gr ammin g Models l decompose Commulllcatlon Qperatlons: us.ed for dlstrlbgted addr. space
one kernel thread, no library scheduler needed mfﬁé:"g’; E)evem) :mi\:;;gb:: E')ga 0 Tasks - dedicated (explicit) communication operations
Many-to-many: Library scheduler assigns user-level threads mutex.signal spaces.signal () ¢ Program Parallelization Steps l oheaue
t(.)ffa set of kernel threads, 11'brary may move user threads to items.signal () event.process () Decomposition: num. tasks > num. cores; Er— Performance of Parallel Systems
different kernel threads during program execution e Lightswitch: lock/unlock system to acquire another . task size >> pfzmllelism overh.ead or Threads * Goals: small response time vs high throughput
e Number of threads should be suitable to parallelism degree semaphore if there are nonzero threads in CS (ilnplemented SChedUhHg:. find an efficient tas.k.exlecutlon order; lmap o user CPU time = N X time per cycle
of application, suitable to available parallelism resources, with private mutex and counter) load balancing among tasks; minimize shared Physical Cores user CPU time — nggleinst “a cycles er inst. (CPI) x time per cycle
not too large to keep overheads small memory access or communicaton operations | & Processors = . St X avs. Cycies per mst. e per cy

¢ Reader-writer without writer starvation: - num. inst. and CPI are also compiler-dependent

Mapping: focus on performance: equal utilization and

Writers Readers — . . 3 a3 _ .
. . omaioait At minimal communication between processors Reﬁnement.mth memory access time (one. level cache):
SynchI‘Ol’llZ&thl’l roomE'mptywait 0 turnstile'signal 0 user CPU time = (Ncycle + Nmm,cycle) x time per CYCIe
ey ? tical o - ' Decomp. and scheduling can be static (compile-time or — n
¢ Race condition: two concurrent threads access a shared . f IC”"C?' 5“""’" for witers readSwitch.lock ( roomEmpty ) P q g c durs ( p . (where Ny _cycre = num. add" cycles due to memory access
resource without any synchronization urnstile.signal () o # crltical section for readers program start) or dynamic (during program execution) Npnmecyele = Nread.cyete + Nuwritecyele

roomEmpty.signal () readSwitch.unlock ( roomEmpt
( PY) [ Types of parallelization Nread,cycle = Nread,op X Rateread,miss X Nmiss,cycles

Critical ti CS i ts: . . . .
¢ Critical section (CS) requirements Instruction: instructions executed in parallel unless o Average memory access time:

Mutual exclusion: If one thread is in CS, then no other is P 3 — .
: arallel Computing Platforms .
Progress: If thread T is not in CS then T cannot prevent p g inhibited by data dependencies:

Tread,access = Tread,hit + Rateread,miss X Tread,miss

— . ) . . e Execution time: - Flow (true) dependency (read-after-write)
other threads fro.m entering CS; threads in CS will CPU Ti Seconds __ Instructions Cycles Seconds - Anti-dependency (write-after-read) * Benchmarks: SPECint, SPCfp, SPECjvm2008, NAS
eventually leave it me = Program ~  Program Instruction Cycle - Output dependenc (write—after—write) . .
Bounded wait: All waiting threads will eventually enter e Levels of Parallelism Bit: word size .p. pe Y . i ¢ Parallel execution time p := num. processors;
Performance: O f . itine CS ; ) = ) Loop: indep. iterations run in parallel (e.g. OpenMP for-loop) ,, .— problem size; T,(n) := execution time (end — start)
Performance: Overhead of entering/exiting is small Instruction: execute instructions in parallel: Data: lied to diff. d : el SIMD P
t k being d ithin it —— . . ata: same op. applied to diff. data in parallel (e.g. ) Cost: processor-runtime product; Cp(n) = p x Tp(n)
W.I.t. WOrk being done within 1 - Pipelining (parallelism across time) data partitioning into ranges) .
Safety property: Mutual exclusion ) . B ) . .. P oning ng; ) ) Cost-optimal par. prog. has same cost as fastest seq. prog.
y property Superscalar (parallelism across space): duplicate pipeline Task (functional parallelism): diff tasks in parallel S T )
Liveness property: Progress, Bounded wait (scheduling can be dynamic (hardware) or static (compiler)) — ' _ Speedup: Sy, (n) = hT:i(nq)» theoretically Sp(n) < p
Performance requirement: Performance Thread: hardware support for multiple thread contexts ° T?BI'SI.{ dependence graph: DAG of tasks and dependencies Superlinear speedup: Sp(n) > p (cache locality, early term., etc)
e Locks: can spin (spinlock) or block (mutex) (PC, registers, etc), e.g. simult. multithreading (SMT) Critical path length: length Otf 1o§1ges;c path Difficulties with measuring speedup: best seq. alg. may not
Software lock: Process: independent memory space, use IPC mechanisms Degree of concurrency = o or s i,aﬁf rlength be known; algorithm with optimum asymptotic complexity
~either use hardware atomics (test-and-set) or Processor: multiple processors ¢ Representation of parallelism: is slower in practice; ieq al,%n)lmpéer(rjsntamon is complex
o . . 3 . — best.se
disable/enable interrupts e Thread level multithreading implementations: Implicit parallelism: Efficiency: Ej(n) = Co(n) ideal efficiency = 1
- give up CPU: call yield() or sleep() instruction switch after each instruction — fine-grained multithreading - Automatic: compiler automatically decomp. & schedule e Amdahl’s Law: Constant unparallehzable fraction of
¢ Semaphores: Wait()/P() and Signal()/V() switch on stalls — coarse-grained multithreading EFU?C.ttlonal li)lrcl)'grammmg: side-effect-free algorithm then: S,(n) < % (limy, 00 S, () = %)
- mutex sem. (binary sem.) or counting sem. (general sem.) B SW%tCh after predeﬁnesi timeslice — tlm.eshce m.t. - }(rlr)l Kltilcifzz:;e(ehljilﬁ. . OpenMP - £ (0 < f<1) is the sequential fraction of algorithm
- semaphores can be signalled by different thread — no - switch When proc. .Walt for ev.ent - sw1tch—0n—e{vent m.t. ) Explici t scho duling: P - also known as fized-workload performance
connection to data being controlled - sched. inst. from diff threads in same cycle — simult. m.t. DI ¢ 26 . - rebuttal: in many cases f is non-const, dependent on n
- Implicit mapping: BSPLib
e Monitor: allows threads to have both mutual exclusion Architectures - Explicit mapping: e Gustafson’s Law: Constant execution time for sequential
and the ability to wait (block) for a certain condition to - Implicit communication & synchronization: Linda part then S,(n) < p (lim,—00 Sp(n) = p)

become true (implemented using mutex + cond. variable) ¢ Flynn’s Taxonomy: SISD, SIMD, MISD, MIMD - Explicit comm. & synchronization: MPI, pthread - const exec. time of seq. part with increasing problem size




e Grosch’s Law (rebuttable): the speed of a computer is
proportional to the square of cost — bigger processor better

¢ Minksy’s Conjecture (rebuttable): the speedup of a
parallel computer increases as the logarithm of num. of
processing elements — large-scale parallelism unproductive

Coherence & Consistency

e Write policy:
Write-through: immediately transferred to main memory
Write-back: dirty bit, only transfer on cache replacement

e Cache coherence definitions:
1: P write to X, n.f.w., then read from X — should get same value
2 (Write Propagation): P; write to X, no further write to
X, then P, read from X — should get same value
3 (Write Serialization): Any processor write V7 to X, any
processor then write V5 to X — all processors should never
read X as V5 then later as V] (i.e. writes seen in same order)

e Hardware cache coherence tasks:
- track sharing status and update shared cache line
Snooping based: no centralized directory, cache monitors
(snoops) on the bus to update its cache line
Directory based: sharing status kept at centralized location,
common with NUMA

e Memory consistency: Each processor has consistent view
of memory through its local cache
Sequential consistency (SC): all reads/writes are serializable
Relaxed consistency: read may be reordered before write of
different variable
- Total store ordering (TSO): writes seen by all other
processors at the same time, in instruction order
- Processor consistency (PC): writes seen by each processor
in instruction order (like NxN pipes)
- Partial store ordering (PSO): writes seen by all other
processors at the same time, out of instruction order (i.e.

' Interconnections|

write-write reorder of different variables can happen)
[PE]
e Major types: 1
Direct (or Static, Point-to-Point): [Pl

N
each endpoint is a processing element

Indirect (or Dynamic): interconnect formed by switches

¢ Embedding: Can embed G’ into G < 3Jo0: V' = V s.t.
o is injective, and if (u,v) € E’ then (o(u),0(v)) € E

e Direct interconnections:

Bisection width: min edges removed to divide network into equal halves
- determines max node messaging rate network can support
- required link data rate = 2um-nodes noﬁfsgasjzgviﬁﬁtfte
Node connectivity: min num. nodes that must fail to
disconnect network (determines robustness)

Edge connectivity: min num. edges that must fail to disconnect network

(determines num. indep. paths between any pair of nodes)

222 dh

e Indirect interconnections: - - -
Bus network: only one pair of %
devices can communicate at a time IH o
Crossbar network: switch state: e

straight or direction change (e}

i

M [Caisk |

—
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e Multistage switching networks:

8 x 8 butterfly 8 x 8 baseline 16 x 16 omega

\g A\

Omega network: stage 0, 1, 2, 3

- n/2 switches per stage

- switch («,7) [a=pos. of switch within stage (e.g. € [0,8));
i=stage number] has edge to switch (8,7 + 1) where

B € {a by cyclic left shift, o by cyclic left shift + inversion of LSB}
XOR-tag routing for omega network:

Let T' = sourcel D & destID (e.g. sourcelD,destID € [0,16))
At stage k: go straight if &*™® bit of T is 0, crossover otherwise

¢ Evaluate indirect interconnections by: cost (num.
switches/links), num. allowable concurrent connections

¢ Routing algorithm classification:
Minimal/Non-minimal: whether shortest path is always chosen
Adaptive/Deterministic: adjust by network status/congestion

Message Passing

e Loosely synchronous: processes synchronize to perform
interactions; apart from that tasks execute fully asynchronously

e Protocol possibilities:
Buffered: uses a temporary buffer (instead of tx. directly to network)
Blocking: original array can be reused after function returns

e Deadlock can happen (xchging data between 2 proc) when:
- Two processes have blocking recv before send
- Two processes have unbuffered blocking send before recv
Instead, even proc should send while odd proc recv first

e Collective Communication

Multi Accumulation Gather Single A
Total Exchange ‘,’ MPI_Reduce_scatter \3;‘ MPI_Gather MPI_Reduce ‘.‘ Point-to-Point Op.
MPI_Alltoall ”g Total Broadcast S Scatter . Single Broadcast M MPI_send/MPI_Recv
MPI_Allgather MPI_Scatter MPI_Broadcast
2] T 1] P[2]a6[8 P [1]2]3]4] Pif2s] [ [ |
A miti p(2[af6[8] P [5[6[7][8] _Mm  p,[32
P6] [ [ et p[2]af6]8] rs[o]10[n]12] LEC I
P8 [ ] P 2[a]6]8 P,13[14]15[16 A
EI Pz [ [ m[il2[3]2] P [i]5[5[E
Pl [ [ ] s, p[a[ [T ]r[s]6]7]8] _wu, r[2[c]m[m
e[ P[EL T T r[s]m0[m[zz] Scrame p[37[a[S
P8 [ [ ] p[8] | | | p[13[14][15]16 p,[a]8[12]16

e Duality: same spanning tree can be used for both ops.

CUDA Programming

¢ Drawbacks of shader GPGPU (general purpose GPU):
- awkward programming interface unnecessarily dependent
on graphics pipeline - no scatter

e Variable qualifiers:
- __device__: global memory, use cudaMemcpyToSymbol
- __constant__: constant (cached), use cudaMemcpyToSymbol
- __shared__: on-chip shared memory (very low latency)

e int atomicCAS(int* address, int expected, int
newval); (returns oldval, overloads for uint and ull avail.)

e Optimization strategies:
- maximize par. exec. to expose maximum data parallelism
- optimize memory usage to maximize memory bandwidth
- optimize instruction usage to maximize instruction
throughput (e.g. avoid divergent warp, low-precision floats)

e Memory optimizations:
- minimize data transfer between host and device
- coalesce global mem access (simult. access to global
memory by threads in a half-warp can be coalesced into
single memory transactions of 32/64/128 bytes; require-
ments (alignment, random) based on compute capability)
- prefer shared mem to global mem where possible
- minimize shared mem bank conflicts

Parallel Algorithm Design

- hard to transfer data from host to device
- no communication between threads
- coarse thread synchronization

e GPU architechure:
- multiple streaming

e Consider machine-independent issues first
Task/Channel model: task = code & data needed for comp-
utation; channel = message queue from one task to another

e Foster’s design methodology:
Partitioning of problem into small independent tasks

multiprocessors (SMs)
- SM consists of multiple
compute cores, memories, schedulers

e CUDA programming model:
- SPMD model

- Data-centric (domain decomposition): divide data into
pieces (=~ equal size), associate computations with data

- Computation-centric (functional decomposition): divide
computation into pieces, associate data with computations
Communication between tasks

- transparently scales to arbitrary num. cores

- programmers focus on parallel algorithms

- enable heterogeneous systems (i.e. CPU4+GPU)

- threads need not be completely independent — can share
results and memory accesses, atomic operations

- in same block: can use shared mem, barrier syncthreads
- each block assigned an SM and cannot migrate

- several blocks can reside concurrently on one SM

- register file partitioned among resident threads

shared memory partitioned among resident blocks

¢ Execution mapping to architecture:
- SIMT (single instruction, multiple thread) execution model
- multiprocessor sched. & exec. threads in SIMT warps (32 threads)
- threads in a warp start tgt at same program address

- local comm.: task needs data from small number of other
tasks only (create channels illustrating data flow)

- global comm.: significant num. of tasks contribute data for
calculation (don’t create channels for them early in design)
Agglomeration: combine tasks to larger tasks

- reduce overheads (task creation + communication)

- (In MPI, usually one agglomerated task per processor)
Mapping of tasks to processors to maximize processor
utilization (place tasks on different processors) but
minimize inter-processor communication (place tasks that
communicate frequently on the same processor)

- done by OS for centralized multiprocessor

- done by user for distributed memory systems

d - non-buffered blocking operation misuse can cause idling/deadlocks . . . _ 3 3
n nodes degree diameter fm;gs bisect. - idling due to mismftcll: in timing between sender ar%é receiver - each warp executes one common instruction at a time Energy Efficient Computlng
2 . . . - scheduler groups threads with same exec. path in same warp | e Heterogeneous computing;:
complete graph n—1 1 n—1 (5) - non-blocking op. hides communication overhead, and
- . - Programs: OpenMP+MPI, OpenMP+CUDA, MapReduce
linear array 2 n—1 1 1 usually accompanied by a check-status op. On/off Svs —
ring 2 L%J 2 2 - blocking send can pair with non-blocking recv and vice-versa | | Memory chip Cached | Access Scope Lifetime - Dystems: ) ) )
— ) . Roaist On NTA - Inter-node: diff. CPU generations, brawny+wimpy
d-d mesh (n = %) 2 d(r—1) d n3 Synchronous (MPT only): op. does not complete until both Leglsl er on N/ 1 thread | Thread Tntranode
= i icati oca o - latra-node:
d-d torus (n = r) 2d d|5] 2d T sender and receiver have started communication op. R/W All - Inter-chip: CPU+VPU (“vision”, Al accelerator), CPU+GPU
k-d hypercube (n = 2F)| logn logn logn 5 e MPI message: Data: buffer, count, datatype; Shared On N/A fﬁrﬁﬁii Block - Intra-chip: CPU+GPU, ARM big.LITTLE
k-d CCC (n = k2F) 3 2k —1+ gj 3 ok Envelope: src/dst, tag, communicator Global No All Host Heterogeneity: more power-efficient
complete bin. tree (n=2"-1)] 3 2log 21 1 1 - Group = set of processors gg;sif:t Off Yes R threads | allocation Functional heterogeneity: different ISA
_ _ — 1.d 13 d—1 - i — i i in f + host R .
k-ary d. cube (n = k%) .2d . d \_QJ 2d 2.k . r(;?lmsﬁ(?;mgzzzzses communication domain for one or two ~Constant memory — can only read one 32 per cycle Performance heterogeneity: same ISA, different speed
- XY-routing (2D mesh): move in X-dir until Xsye = Xaes then move in V-dir groups oL p - Shared memory — divided into banks, diff. banks can be e Costs of computing: Higher performance — More/faster

- Intra-communicators: communicate within single group
- Inter-communicators: communicate between two groups

- E-cube routing (hypercube): compare coord. tuples of src and

- . e 1k accessed simultaneously
dest; start with MSB or LSB, take link to correct bit if bit differs

computers — Power — Heat — Cooling — Space —

e Topology Metrics:
Diameter: max dist. between any two nodes
- small diameter — small distance for message transmission
Degree: max node degree in graph
- small degree — small node hardware overhead

- MPI_COMM_WORLD is an intra-communicator

e Virtual topologies: e.g. Cartesian, Graph — easier to
address neighbours or by 2D pair of coords

e “Proc. consistency”: order not guaranteed with more
than two processes; but same src to same dst — in order

¢ Compilation:

- NVCC outputs C host code (to be compiled using another

compiler), and PTX code (interpreted at runtime)

e Device code restrictions: can only access GPU memory,
no varargs, no static variables, (old versions) no recursion

Money/Env. cost; Cooling — Power — Money/Env. cost

¢ Cloud computing:
- Characteristics: on-demand self-service, broad network
access, resource pooling, rapid elasticity, measured service
- Service models: SaaS (software), PaaS (platform), IaaS (infra.)
- Deployment models: private/community/public/hybrid clouds




e Virtualization: server/storage/network/services(e.g.DB)

s _ total energy used
o Power use effectiveness (PUE) = b

Increase energy efficiency by: - building custom servers
(minimize AC/DC conversions, remove unnecessary parts,
strategic positioning, decrease fan speed)

- control temp. of equipment (raise temp. to 26°C, manage
airflow, thermal modeling, hot/cold aisles, seawater cooling)




